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Effect of incompressibility on lateral instabilities of polymer brushes in a poor solvent

Christopher Roderick, Hong Guo, and Martin J. Zuckermann
Centre for the Physics of Materials and Department of Physics, McGill University, Montreal, PQ, Canada H3A 2T8
(Received 20 April 2000; published 21 December 2000

We report a theoretical investigation of the lateral instability of grafted polymer layers in a poor solvent.
Within self-consistent mean-field theory, we carry out a linear stability analysis at the random phase approxi-
mation level, for which an explicit incompressibility condition is enforced. Our analysis predicts a stability
diagram in which regions of stable and unstable polymer brush profiles are located. Compared with analysis
where incompressibility is not taken into account, our results suggest that lateral stability is enhanced.
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Understanding the behavior of dense polymer brushes iswahere the temperature has been absorbed into the Hamil-
problem of scientific and technological importance whichtonian andb is the statistical bond length. The parameter
has attracted significant research effdrt Of the many as- >0 controls the polymer-solvent interaction, and thus a
pects of such systems, determining their conformational relarger value ofx indicates a poorer solvent qualityl,, is the
sponse to the solvent condition is crucial to the prediction ofotal number of polymers in the brush, akdrefers to the
their physical properties. In a good solvent and with a highsemi-infinite volumez>0 (z=0 being the grafting plane
grafting density, the chains of a polymer brush overlap reThe first term of Eq.(1) describes the entropic stretching
pulsively, and stretch away from the substri&e However, —€nergy of the chains, whe#&,(x«) is the position vector of
when a polymer brush is immersed in sufficiently poor sol-the uth monomer on thenth chain. The grafting of the
vent, it becomes energetically unfavorable for the solvethamS to an |mp_enetrable interface is manifest as the follow-
molecules to mix with the polymef8—6], and a microphase N9 _t\_/vo constraints on the components of the monomer
separation occurs where polymers and solvent molecules aROSitions{R,(0)];=0 and[Ry(x)],>0 for 0<p<M. The
spatially separated. A theoretical analysis of polymer brushegecond term of Eq1) gives the interaction between polymer
under poor solvent conditions was the subject of several preand solvent in terms of monomer and solvent densitigs
vious works[3,4,7,8. Of particular interest to this paper is and p,, defined aSlAJp(r)EE,TEJBAdWS[f—Rn(,u)] and
the self-consistent fiel(SCH analysis due to Yeung, Balazs, -~ (r)EENS S[r—r,], respectively, where; is the position
and Jasnow8] (YBJ), who combined the random phase ap- Ps =l o P Y : : P

of the ith solvent particle, andNg is the total number of

proximation[ 7] with a numerical SCF, thereby predicting the | ecul Finall del includ .
occurrence of a linear instability of stretched brush configuS° vent molecules. Finally, our model includes an incom-

rations as the solvent quality was reduced. It was found thaf€SsiPility condition. In the mean-field approximation, the

there existed two regimes along the stability line separatin%"conrprelss'b'“ty of a mllxturg of two materials is expressed
the extended and collapsed polymer brushes: a weakly intePY & local conservation lad0],

acting Gaussian regime, where the grafted layer was pp(r)  ps(r)

“dimpled” through the depth of the layer; and a regime ?”L?: @
where the dimpling was confined to the outer tips of the P *

layer. where po, and pgs are the bulk number densities of pure

In this report we present a study of the lateral instabilitymonomers and solvent, respectively. Mo@Bl is off lattice,
of a polymer brush in a poor solvent where incompressibilityand as a consequendg the statistical bond length, and
is explicitly included. This instability is controlled by the pgpl’3, relating to the packing diameter of an effective mono-
balance between solvation energy and configurational emer, are independent length scales. Solvent moleddl&ls
tropy. Theoretical predictions of instability hence dependare explicitly included through the configurational density
upon excluded volume effects for which the incompressibil-; (1), and the incompressibility conditiofEg. (2)] is in-
ity of the system could play an important role. However, thisclyded as a constraint throughout our analysis. As the bulk
condition was neglected in previous analy$8s4,8. Our  gensities are the reciprocal of the solvent molecule and
main result shows that the incompressibility condition has gnonomer volumes, they effectively control excluded volume
quantitative influence upon the predicted stability line in thejnteractions, as shown in the virial expansion derived below

strongly interacting regime. [Egs.(6) and(7)].
We consider an effective Hamiltonian for polymer  oOyr analysis proceeds in two steps. First, we calculate the
brusheq9], laterally homogeneous mean-figMF) solution of the brush
N profile by a numerical self-consistent calculation following

2
iRn(#)} the standard techniquyi&0]. Next we apply the random phase
du approximation7,8] (RPA) to expand the free energy func-
tional self-consistently around the MF state, obtaining a sta-
+ aJ' drf)p(r)ﬁs(r), (1)  bility criteria for the brush against Gaussian fluctuations. The
Y% stability analysis gives us the stability boundary which sepa-
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a8 [
[Pp ps] 2b2n§=:l 0 M
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rates the stable and unstable brush profiles. The SCF analys 08 g ———— @) 1.5 - - o)
is based on the effective Hamiltonifigg. (1)] which defines ;
the partition function by including Ed2) as well as making H Y

0.4 B 4

the mean field densitigs,(r) andps(r) equal top, andps.
These constraints are imposed by the use of undeterminepp
Lagrange multiplierg10] in the standard manner. Applica-
tion of the method of Hong and NoolanfdiQ], enables us,

after considerable analysj42], enables us, after consider-
able analysis, to reduce the partition function to the form 0

1.5 T T T

z= f D{X}exp(— HI{X}]), ) @ (d)

0=0.000 —
0=0.500 ===

02 F

where D(---) denotes functional integration.{X} !

=[wp,ws,7,pp,ps] is the collective symbol for mean-field pp
potentialsw,(r) of polymers andog(r) of solvent particles,
and the Lagrange multiplier(r) for the incompressibility
condition[12] [Eg. (2)]. The effective Hamiltoniamd of Eq.
(3) has the expression

+ 0 [l »': 1
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—H[{X}]=In Qp[wp]+Ns|n Qs[ws]—f_fvdr[wp(r)Pp(r) z z
FIG. 1. Density profiles of polymer brush along the direction
+ wg(r)pg(r)— app(l’)ps(r)] perpendicular to the grafting surfade) Comparison of profiles for

different solvent quality for parametepg,=pos=1, 0,=0.2, and

M=64. Solid line: a good solvent where the brush is strongly
+ fvdr[l— ¢p(r)_ os(r)1n(r), (4) stretched; dashed line: @solvent; dotted line: a poor solverib)
pop="6 and ps=0.05. (C) pop=6 and pys=40. (d) pop=1 and
pos=0.05. For 1b)-1(d) the other parameters are the same as in
(a). The dotted curves of(h)—1(d) give the least-stable eigenvec-
tors obtained from the correlation matfikg. (5)]. p, shows units
of number of effective monomers per unit volume, and the scaled
distance from the grafting surfa@b is dimensionless.

whereQ,, is the polymer Green’s functidr@] which satisfies
a diffusion equation with potentialwy(r), Qg ws]
= [vdr exp(-oyr))/V, and, ¢, s(r)=pp s(r)/pop,s are the
fractional number densities.

Minimization of H[{X}] with respect to its variables
gives a set of mean-field equations which were solved self- N ) -
consistently together with the diffusion equation on a nu-by solvent quantities. The linear stability of the polymer
merical grid [12]. Throughout the numerical analysis we brush is determined by calculating the eigenvalues of the
tistical bond length ab=/3, and the grafting density at tipn wavelength: we vary the .intergction parameteuntil_ an
op=1/5 (the number of polymer chains per unit arefig- eigenvalue becomes zero, signaling the onset of a linear in-
tion perpendicular to the grafting plarthe z direction for ~ Performed for several system parametggsandpop.
several values of. It is clear that the density profile,(z) is Figures 1b)—1(d) show the density profiles at the point of
gradually pushed toward the grafting plane as the solverif'Stability together with the least stable eigenvecttivat
quality is reduced 4 is increasell These results are consis- With zero eigenvalueof the correlation matrix. For large
tent with those obtained previoudg3]. pop, the least sta_ble_ e|genvectors for the fluctuating modes

The stability of the density profile in poor solvent was are located deep inside the brushg. 1(b)] for lower values
analyzed by investigating the effects of fluctuations withinOf pos. @nd move toward the tip of the brushzs increases
the RPA following a similar procedure to that of RE]. In [Fig. 1(c)]. This behavior is consistent with that found by
our case, we expand the effective Hamiltonian of E4). YBJ, corresponding to the Gaussian and stretched conforma-
around the mean field to second order, and obai the  tions, respectively8]. On the other hand, for smaib,, [Fig.

two-point correlation function for density fluctuations, 1(d), wherepop=1], the least stable eigenmode must locate
in the tip region because fluctuations in the center of the

1 1, 2 1 layer would bring the monomers into closer contact where
Crpa(T1:12)=71P0pCpp (11:72) + posCss (11.72)] excluded volume interactions would stabilize the layer. The
fact that the least stable mode is located inside the [d5igr
1(b)] indicates the onset of the “dimpled phase” where large
density fluctuations would span the entire brush. On the
other hand, when the least stable mode is near the tip region,
where Cpp(rl,rz)=&zln Qplwplldwy(r1) dwp(r,). A similar  the dimpling is localized at the outer part of the br{igh
expression foiC, is found by replacing polymer quantities Figure 2 shows slices through the stability surface sepa-

aAPopPo
— = —a(r—r), (5)
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FIG. 2. Stability lines: For each case, the stable region lies be-
low the line, while the linearly unstable region lies above the line

for the extended brush profiles. Pan@): a vs pos for pgp
=1,2,4,8, and 14(top to bottom. Panel(b): @ vs pg, for pos
=0.05,0.1,0.2,0.4,1,5, and 10@p to bottom, with the dotted line
representing ® solvent[ a=1/(2pgp)]. pop Shows units of num-
ber of effective monomers per unit volumm, units of number of
solvent particles per unit volume, ardunits of volume.

rating the extended brush regime from the collapsed brustvhere the virial coefficients are found to be

regime. Fig. 2a) indicates that for fixego,, a smaller value
of the interaction parameter is required to drive the insta-
bility as pgs is increased. This is understandable since a
larger value ofpos means smaller solvent molecules, which and w;= pOS/Zpop The first two terms of Eq(6) give the
can more easily penetrate into the grafted layer. As a direqeolymer entropic contribution, while the other terms give the

consequence of the model Hamiltonigsg. (1)], where the

1000
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FIG. 3. Comparison of the stability lines between modéls
and (6) using the variabley and 8. The solid line corresponds to
the model(6) which does not explicitly include incompressibility.
The dotted lines correspond to the mo&ds.(1) and(2)] obtained
by fixing pop=0.75,1.1,1.5,2.75,5.0, and 9.0 from top to bottom.
Both y and B8 are dimensionless, as noted in the body of the text
where they are defined.

@)

effective interaction between polymers. Clearly, from &.

overlap of solvent and monomer densities directly determinghe parametew, can be positive, describing a good solvent,
the interaction, a larger overlap requires a smaller value of or negative, describing a poor solvent, depending on the in-

to drive the instability. This trend is diminished whepg, is
decreased, as shown by the successive congggritnes in

teraction strengthe. On the other hand, the parametes,
and all the omitted higher order coefficients, are positive

Fig. 2@). The reason is the same: for larger volume perl15]. Our model[Egs. (1) and(2)] is equivalent to the full
monomer(smallerp,,) there is less free volume in the layer virial expansion when no terms are omitted. Equati@n
into which the solvent molecules can penetrate, diminishingndicates that theé# solvent (v,=0) is given by «
the overlap and enhancing the stability. This physical picture= 1/(2pq,), corresponding to the dotted line shown in Fig.
is consistent with Fig. ), where the stability lines are plot- 2(b). In addition, fixing the interaction strength, w, is

ted for constanps, in the regime of smalp,, . The regime

of large po, shall be discussed shortly.

It is useful to compare our analysis with that of Rjed],

negative whermg,>1/(2«), indicating a poor solvent. Mini-

mization ofw, with respect tgpg, in Eq. (7) gives the most

negative value ofv, when pg,= 1/a. Hence, when taking

which was based on a virial expansion of the Hamiltonian. Ininto account the entropic contribution to the free energy, we
order to do so, we first integrate out quantities related to thexpect the linear stability line to change behavior negy

solvent moleculesp,ps, andn from the partition function
[Eqg. (3)] using the mean-field equations. The result, trun-

cated at third order, if12]

Hiwp.pp] =~ QL] | dro(r)py(n

Wa 2004 3 3
+ 5 fvdrpp(l’)"- 3 fvdrpp(r),

(6)

=1/a. Figure Zb) shows that this is indeed the case as the
unstable region shrinks when, becomes large, as indicated
by the upward bend of the stability line.

The Hamiltonian of Eq(6) was used in Refl8] to ana-

lyze the stability of polymer brushes in a poor solvent. It was
shown [8] that the linear stability is characterized by two
dimensionless parametersy and B, defined as vy

=3M(o/b)?(w3/w,)? and B=(1/3)(b/o)?(Wy/w3). Here

v gives a measure of the stretching of the brush away from
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the grafting surface relative to the lateral extent of a Gausg-8]. Finally, in the strongly interaction regime wheseis
ian chain, ands is the strength of the interaction relative to large, the model of Eq6) gives a scaling ofgec y~ /4 while
the stretching energy of a chain. We performed the stabilityour model asymptotically approaches this exponent from be-
analysis using Hamiltonia(6), confirming the result of Ref.  |ow. In this regime, the least stable modes are located near
[8], and compared the stability lines of both modHES.  the tip of the brush as shown in FigsicLand ¥d). This
(1), (2) and Eq.(6)] as shown in Fig. 3. Several comments jndicates that the dimpling occurs near the outer tip of the
are in order. _ o _ _ polymer layer{8].

First, the result without explicit inclusion of the incom- * |, symmary, we have examined the linear stability of a
pressibility condition, i.e., using Hamiltonid6), is given by polymer brush in a poor solvent under the constraint of in-

the limiting stability line as indicated by the solid curve. This compressibility. Our results, based on the model of @)
is understandable, since solvent incompressibility imposes g o qualitativély the same physical pictufé] obtained

ponstra@nt on the local solvent density, thereby_reducing theom a simpler model of Eq(6). Specifically, there exist two
interaction between solvent and polymer. For this reason, 0yl gimes of the linear stability: the weak and strong interac-
model[Egs. (1) and(2)] always gives a larger stable region yjon |imits. In the former, where incompressibility is essen-
as shown in Fig. 3. Second, the stability lines in Fig. 3 of ourja )1y not important due to weak interaction, both models are
model[Egs.(1) and (2)] were calculated by fixingo,, and g antitatively equivalent. In the latter, where incompressibil-
varying pos and . Consistent with Fig. @), smaller values v piays a role, there is a quantitative change to the stability
of pop give larger regions with a stable extended brush projine gptained from the simpler model of E€6): our model

file._This is i_nd_icated by th_e dottec_i lines above the solid ””epredicts a larger region for stable polymer brush profiles in
in Fig. 3. This is also consistent with E(f) where a smaller 4 “phase” diagram of Fig. 3.

value ofpg, can make the parameter, less negative giving

a slightly better solvent condition. Third, in the weak inter- The authors gratefully acknowledge Dr. G. Soga, Dr. J.
action regime where is small, our results are in good agree- Polson, Professor M. Laradji, Professor C. Yeung, Professor
ment with Ref.[8], and confirm theBxy~ %2 scaling of the  D. Jasnow, Professor A. Balacz, and Professor M. D. Whit-
stability line (see Fig. 3 In this regime, the least stable more for many useful discussions on SCF and RPA theories.
fluctuating mode is located inside the brush as shown in FigWe acknowledge financial support from NSERC of Canada
1(b), and it leads to the “dimple” profile discussed in Ref. and FCAR of Quebe¢H. G. and M. Z).
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