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Effect of incompressibility on lateral instabilities of polymer brushes in a poor solvent
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We report a theoretical investigation of the lateral instability of grafted polymer layers in a poor solvent.
Within self-consistent mean-field theory, we carry out a linear stability analysis at the random phase approxi-
mation level, for which an explicit incompressibility condition is enforced. Our analysis predicts a stability
diagram in which regions of stable and unstable polymer brush profiles are located. Compared with analysis
where incompressibility is not taken into account, our results suggest that lateral stability is enhanced.

DOI: 10.1103/PhysRevE.63.012501 PACS number~s!: 72.10.Bg
is
ch

r
o

ig
re

ol
en

a
h
pr
s
s,
p
e

gu
th
tin
te
a
e
he

lity
lit
e
e
n
bil
his

s
he

er

mil-

a

g

ow-
r

r

m-
he
ed

re

d
o-

ity

ulk
nd
e

ow

the

g
e
-
ta-
he

pa-
Understanding the behavior of dense polymer brushes
problem of scientific and technological importance whi
has attracted significant research effort@1#. Of the many as-
pects of such systems, determining their conformational
sponse to the solvent condition is crucial to the prediction
their physical properties. In a good solvent and with a h
grafting density, the chains of a polymer brush overlap
pulsively, and stretch away from the substrate@2#. However,
when a polymer brush is immersed in sufficiently poor s
vent, it becomes energetically unfavorable for the solv
molecules to mix with the polymers@3–6#, and a microphase
separation occurs where polymers and solvent molecules
spatially separated. A theoretical analysis of polymer brus
under poor solvent conditions was the subject of several
vious works@3,4,7,8#. Of particular interest to this paper i
the self-consistent field~SCF! analysis due to Yeung, Balaz
and Jasnow@8# ~YBJ!, who combined the random phase a
proximation@7# with a numerical SCF, thereby predicting th
occurrence of a linear instability of stretched brush confi
rations as the solvent quality was reduced. It was found
there existed two regimes along the stability line separa
the extended and collapsed polymer brushes: a weakly in
acting Gaussian regime, where the grafted layer w
‘‘dimpled’’ through the depth of the layer; and a regim
where the dimpling was confined to the outer tips of t
layer.

In this report we present a study of the lateral instabi
of a polymer brush in a poor solvent where incompressibi
is explicitly included. This instability is controlled by th
balance between solvation energy and configurational
tropy. Theoretical predictions of instability hence depe
upon excluded volume effects for which the incompressi
ity of the system could play an important role. However, t
condition was neglected in previous analyses@3,4,8#. Our
main result shows that the incompressibility condition ha
quantitative influence upon the predicted stability line in t
strongly interacting regime.

We consider an effective Hamiltonian for polym
brushes@9#,

H@ r̂p ,r̂s#5
3

2b2 (
n51

Np E
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M
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Rn~m!G2
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dr r̂p~r !r̂s~r !, ~1!
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where the temperature has been absorbed into the Ha
tonian andb is the statistical bond length. The parametera
.0 controls the polymer-solvent interaction, and thus
larger value ofa indicates a poorer solvent quality.Np is the
total number of polymers in the brush, andV refers to the
semi-infinite volumez.0 (z50 being the grafting plane!.
The first term of Eq.~1! describes the entropic stretchin
energy of the chains, whereRn(m) is the position vector of
the mth monomer on thenth chain. The grafting of the
chains to an impenetrable interface is manifest as the foll
ing two constraints on thez components of the monome
positions:@Rn(0)#z50 and@Rn(m)#z.0 for 0,m<M . The
second term of Eq.~1! gives the interaction between polyme
and solvent in terms of monomer and solvent densitiesr̂p

and r̂s , defined asr̂p(r )[(n51
Np *0

Mdmd@r2Rn(m)# and

r̂s(r )[( i 51
Ns d@r2r i #, respectively, wherer i is the position

of the i th solvent particle, andNs is the total number of
solvent molecules. Finally, our model includes an inco
pressibility condition. In the mean-field approximation, t
incompressibility of a mixture of two materials is express
by a local conservation law@10#,

rp~r !

r0p
1

rs~r !

r0s
51 ~2!

where r0p and r0s are the bulk number densities of pu
monomers and solvent, respectively. Model~1! is off lattice,
and as a consequenceb, the statistical bond length, an
r0p

21/3, relating to the packing diameter of an effective mon
mer, are independent length scales. Solvent molecules@11#
are explicitly included through the configurational dens
r̂s(r ), and the incompressibility condition@Eq. ~2!# is in-
cluded as a constraint throughout our analysis. As the b
densities are the reciprocal of the solvent molecule a
monomer volumes, they effectively control excluded volum
interactions, as shown in the virial expansion derived bel
@Eqs.~6! and ~7!#.

Our analysis proceeds in two steps. First, we calculate
laterally homogeneous mean-field~MF! solution of the brush
profile by a numerical self-consistent calculation followin
the standard technique@10#. Next we apply the random phas
approximation@7,8# ~RPA! to expand the free energy func
tional self-consistently around the MF state, obtaining a s
bility criteria for the brush against Gaussian fluctuations. T
stability analysis gives us the stability boundary which se
©2000 The American Physical Society01-1
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rates the stable and unstable brush profiles. The SCF ana
is based on the effective Hamiltonian@Eq. ~1!# which defines
the partition function by including Eq.~2! as well as making
the mean field densitiesrp(r ) andrs(r ) equal tor̂p andr̂s .
These constraints are imposed by the use of undeterm
Lagrange multipliers@10# in the standard manner. Applica
tion of the method of Hong and Noolandi@10#, enables us,
after considerable analysis@12#, enables us, after conside
able analysis, to reduce the partition function to the form

Z5E D$X%exp~2H@$X%#!, ~3!

where D(•••) denotes functional integration.$X%
[@vp ,vs ,h,rp ,rs# is the collective symbol for mean-fiel
potentialsvp(r ) of polymers andvs(r ) of solvent particles,
and the Lagrange multiplierh(r ) for the incompressibility
condition@12# @Eq. ~2!#. The effective HamiltonianH of Eq.
~3! has the expression

2H@$X%#5 ln Qp@vp#1Nsln Qs@vs#1E
V
dr @vp~r !rp~r !

1vs~r !rs~r !2arp~r !rs~r !#

1E
V
dr @12fp~r !2fs~r !#h~r !, ~4!

whereQp is the polymer Green’s function@9# which satisfies
a diffusion equation with potentialvp(r ), Qs@vs#
[*Vdr exp(2vs(r ))/V, and,fp,s(r )[rp,s(r )/r0p,0s are the
fractional number densities.

Minimization of H@$X%# with respect to its variables
gives a set of mean-field equations which were solved s
consistently together with the diffusion equation on a n
merical grid @12#. Throughout the numerical analysis w
fixed the number of monomers per chain atM564, the sta-
tistical bond length atb5A3, and the grafting density a
sp51/5 ~the number of polymer chains per unit area!. Fig-
ure. 1~a! gives the SCF monomer density profiles in a dire
tion perpendicular to the grafting plane~the z direction! for
several values ofa. It is clear that the density profilerp(z) is
gradually pushed toward the grafting plane as the solv
quality is reduced (a is increased!. These results are consis
tent with those obtained previously@13#.

The stability of the density profile in poor solvent wa
analyzed by investigating the effects of fluctuations with
the RPA following a similar procedure to that of Ref.@8#. In
our case, we expand the effective Hamiltonian of Eq.~4!
around the mean field to second order, and obtain@14# the
two-point correlation function for density fluctuations,

CRPA
21 ~r1 ,r2!5

1

4
@r0p

2 Cpp
21~r1 ,r2!1r0s

2 Css
21~r1 ,r2!#

2
ar0pr0s

2
d~r12r2!, ~5!

where Cpp(r1 ,r2)5]2ln Qp@vp#/]vp(r1)]vp(r2). A similar
expression forCss is found by replacing polymer quantitie
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by solvent quantities. The linear stability of the polym
brush is determined by calculating the eigenvalues of
correlation matrixCRPA

21 as a function of the lateral fluctua
tion wavelength: we vary the interaction parametera until an
eigenvalue becomes zero, signaling the onset of a linea
stability of the mean-field brush profile@8#. This analysis is
performed for several system parametersr0s andr0p.

Figures 1~b!–1~d! show the density profiles at the point o
instability together with the least stable eigenvector~that
with zero eigenvalue! of the correlation matrix. For large
r0p , the least stable eigenvectors for the fluctuating mo
are located deep inside the brush@Fig. 1~b!# for lower values
of r0s , and move toward the tip of the brush asr0s increases
@Fig. 1~c!#. This behavior is consistent with that found b
YBJ, corresponding to the Gaussian and stretched confor
tions, respectively@8#. On the other hand, for smallr0p @Fig.
1~d!, wherer0p51#, the least stable eigenmode must loca
in the tip region because fluctuations in the center of
layer would bring the monomers into closer contact wh
excluded volume interactions would stabilize the layer. T
fact that the least stable mode is located inside the layer@Fig.
1~b!# indicates the onset of the ‘‘dimpled phase’’ where lar
density fluctuations would span the entire brush. On
other hand, when the least stable mode is near the tip reg
the dimpling is localized at the outer part of the brush@8#.

Figure 2 shows slices through the stability surface se

FIG. 1. Density profiles of polymer brush along the directi
perpendicular to the grafting surface.~a! Comparison of profiles for
different solvent quality for parametersr0p5r0s51, sp50.2, and
M564. Solid line: a good solvent where the brush is stron
stretched; dashed line: au solvent; dotted line: a poor solvent.~b!
r0p56 and r0s50.05. ~c! r0p56 and r0s540. ~d! r0p51 and
r0s50.05. For 1~b!–1~d! the other parameters are the same as
~a!. The dotted curves of 1~b!–1~d! give the least-stable eigenvec
tors obtained from the correlation matrix@Eq. ~5!#. rp shows units
of number of effective monomers per unit volume, and the sca
distance from the grafting surfacez/b is dimensionless.
1-2



us

-

ch
re

in
f

e
r
in
ur
-

. I
th

n

he

nt,
in-

ive

g.

we

the
d

as
o

om

.

m.
ext

be
ine

BRIEF REPORTS PHYSICAL REVIEW E 63 012501
rating the extended brush regime from the collapsed br
regime. Fig. 2~a! indicates that for fixedr0p , a smaller value
of the interaction parametera is required to drive the insta
bility as r0s is increased. This is understandable since
larger value ofr0s means smaller solvent molecules, whi
can more easily penetrate into the grafted layer. As a di
consequence of the model Hamiltonian@Eq. ~1!#, where the
overlap of solvent and monomer densities directly determ
the interaction, a larger overlap requires a smaller value oa
to drive the instability. This trend is diminished whenr0p is
decreased, as shown by the successive constantr0p lines in
Fig. 2~a!. The reason is the same: for larger volume p
monomer~smallerr0p) there is less free volume in the laye
into which the solvent molecules can penetrate, diminish
the overlap and enhancing the stability. This physical pict
is consistent with Fig. 2~b!, where the stability lines are plot
ted for constantr0s , in the regime of smallr0p . The regime
of larger0p shall be discussed shortly.

It is useful to compare our analysis with that of Ref.@8#,
which was based on a virial expansion of the Hamiltonian
order to do so, we first integrate out quantities related to
solvent molecules,vs ,rs , andh from the partition function
@Eq. ~3!# using the mean-field equations. The result, tru
cated at third order, is@12#

H@vp ,rp#52 ln Q@vp#2E
V
drvp~r !rp~r !

1
w2

2 E
V
drrp

2~r !1
w3

3 E
V
drrp

3~r !, ~6!

FIG. 2. Stability lines: For each case, the stable region lies
low the line, while the linearly unstable region lies above the l
for the extended brush profiles. Panel~a!: a vs r0s for r0p

51,2,4,8, and 14~top to bottom!. Panel ~b!: a vs r0p for r0s

50.05,0.1,0.2,0.4,1,5, and 100~top to bottom!, with the dotted line
representing aQ solvent@a51/(2r0p)#. r0p shows units of num-
ber of effective monomers per unit volume,r0s units of number of
solvent particles per unit volume, anda units of volume.
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where the virial coefficients are found to be

w25~r0s /r0p
2 !~122ar0p!, ~7!

and w35r0s/2r0p
3 . The first two terms of Eq.~6! give the

polymer entropic contribution, while the other terms give t
effective interaction between polymers. Clearly, from Eq.~7!
the parameterw2 can be positive, describing a good solve
or negative, describing a poor solvent, depending on the
teraction strengtha. On the other hand, the parameterw3,
and all the omitted higher order coefficients, are posit
@15#. Our model@Eqs. ~1! and ~2!# is equivalent to the full
virial expansion when no terms are omitted. Equation~7!
indicates that theu solvent (w250) is given by a
51/(2r0p), corresponding to the dotted line shown in Fi
2~b!. In addition, fixing the interaction strengtha, w2 is
negative whenr0p.1/(2a), indicating a poor solvent. Mini-
mization ofw2 with respect tor0p in Eq. ~7! gives the most
negative value ofw2 when r0p51/a. Hence, when taking
into account the entropic contribution to the free energy,
expect the linear stability line to change behavior nearr0p
51/a. Figure 2~b! shows that this is indeed the case as
unstable region shrinks whenr0p becomes large, as indicate
by the upward bend of the stability line.

The Hamiltonian of Eq.~6! was used in Ref.@8# to ana-
lyze the stability of polymer brushes in a poor solvent. It w
shown @8# that the linear stability is characterized by tw
dimensionless parametersg and b, defined as g
53M (s/b)2(w3 /w2)2 and b5(1/3)(b/s)2(w2

4/w3
3). Here

g gives a measure of the stretching of the brush away fr

FIG. 3. Comparison of the stability lines between models~1!
and ~6! using the variablesg andb. The solid line corresponds to
the model~6! which does not explicitly include incompressibility
The dotted lines correspond to the model@Eqs.~1! and~2!# obtained
by fixing r0p50.75,1.1,1.5,2.75,5.0, and 9.0 from top to botto
Both g and b are dimensionless, as noted in the body of the t
where they are defined.
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BRIEF REPORTS PHYSICAL REVIEW E 63 012501
the grafting surface relative to the lateral extent of a Gau
ian chain, andb is the strength of the interaction relative
the stretching energy of a chain. We performed the stab
analysis using Hamiltonian~6!, confirming the result of Ref
@8#, and compared the stability lines of both models@Eqs.
~1!, ~2! and Eq.~6!# as shown in Fig. 3. Several commen
are in order.

First, the result without explicit inclusion of the incom
pressibility condition, i.e., using Hamiltonian~6!, is given by
the limiting stability line as indicated by the solid curve. Th
is understandable, since solvent incompressibility impose
constraint on the local solvent density, thereby reducing
interaction between solvent and polymer. For this reason,
model @Eqs.~1! and ~2!# always gives a larger stable regio
as shown in Fig. 3. Second, the stability lines in Fig. 3 of o
model @Eqs.~1! and ~2!# were calculated by fixingr0p , and
varying r0s anda. Consistent with Fig. 2~a!, smaller values
of r0p give larger regions with a stable extended brush p
file. This is indicated by the dotted lines above the solid l
in Fig. 3. This is also consistent with Eq.~7! where a smaller
value ofr0p can make the parameterw2 less negative giving
a slightly better solvent condition. Third, in the weak inte
action regime whereg is small, our results are in good agre
ment with Ref.@8#, and confirm theb}g23/2 scaling of the
stability line ~see Fig. 3!. In this regime, the least stabl
fluctuating mode is located inside the brush as shown in
1~b!, and it leads to the ‘‘dimple’’ profile discussed in Re
e

t
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@8#. Finally, in the strongly interaction regime whereg is
large, the model of Eq.~6! gives a scaling ofb}g23/4, while
our model asymptotically approaches this exponent from
low. In this regime, the least stable modes are located n
the tip of the brush as shown in Figs. 1~c! and 1~d!. This
indicates that the dimpling occurs near the outer tip of
polymer layer@8#.

In summary, we have examined the linear stability o
polymer brush in a poor solvent under the constraint of
compressibility. Our results, based on the model of Eq.~2,1!,
give qualitatively the same physical picture@8# obtained
from a simpler model of Eq.~6!. Specifically, there exist two
regimes of the linear stability: the weak and strong inter
tion limits. In the former, where incompressibility is esse
tially not important due to weak interaction, both models a
quantitatively equivalent. In the latter, where incompressib
ity plays a role, there is a quantitative change to the stab
line obtained from the simpler model of Eq.~6!: our model
predicts a larger region for stable polymer brush profiles
the ‘‘phase’’ diagram of Fig. 3.
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